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Abstract

We have replicated the results for five proposed loss functions from Lua [11] to
Keras [7] based on the Image-to-Image Translation with Conditional Adversarial
Networks paper [5]. To evaluate the results, visual evaluation of the generated im-
ages, FCN(Fully Convolutional Networks for Semantic Segmentation)-score[9]
and color distributions of CIELAB colors [4] are used. Some discrepancies were
found between the two code versions and the problems with the Keras code are
discussed in this report. To better understand the paper, we have added Lua code
on top of the original model [6] to reconstruct image from every convolutional
layer, and run the model through a couple of new datasets. The reconstruction
showed us that the transformation is more complicated and global. We also trained
the models on some new datasets. The datasets are all variations of MNIST [10]
image transformations. By showing that the network can transform images from
MNIST dataset to variations of fonts as well as images of Chinese number charac-
ters, we have further proved that the model is truly versatile and is very powerful
for multiple-to-one transformations. Additionally, we explored and analyzed the
stochasticity of the network based on the output images, the histogram images of
all pixel values per image, and the PCA figures of different outputs from models
using the same input image. We verified that higher dropout rate do tend to in-
crease the stochasticity, and it can be even further improved by adding a random
activation layer. However, there is trade-off effect between the stochasticity and
the realistic-looks of the image.

1 Introduction

In the real world, we always encounter image-to-image translation problems. Imagine you are an
architect and have designed the outline of a building for your client, but the client are not sure
whether your design has a good look in the real world. It’s apparent that the client is not willing to
pay for the money to build it according to your design but finally finds that the appearance is what
not they want, so you need to translate your design blueprint to real world images to satisfy your
client. That is where our motivation comes in. If we can just draw a outline of the building and make
the network help us figure out what it may looks like in the real world, we can save a lot of time
and money to recruit a drawer to make the design realistic. There are many kinds of image-to-image
translation tasks, for example, we can translate segmented images to real world images, black and
white images to colored images, maps to aerial photographs, day images to night images, and etc.
The other direction is also applicable.
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Normal neural networks are often designed to solve specific problems, so they are not general
enough to tackle all these problems with the same structure. The Image-to-Image Translation pa-
per [5] proposed an interesting conditional Generative Adversarial Networks (cGAN) as a general-
purpose solution to image-to-image translation problems. It is interesting to us because it was able
to use a generalized neural network to tackle many types of problems in image processing and com-
puter vision, such as translate GPS maps to google maps, turn black and white image to a colorful
image, and even turn segmented image to a photo-realistic image, etc. These problems are difficult
because they normally require different loss functions, and the translation is not one-to-one as is
mentioned in [5]. Hence it is very important for us to analyze and learn more about the mechanism
of this network and what we can do to improve its performance.

We want to first replicate the model in Keras code from the original Lua code and verify the figures
from the paper on the Facades dataset [15].

After test the capabilities of cGAN network, we want to further study this model and use it to test its
capability with the MNIST dataset. Although MNIST dataset is easily approachable, this dataset is
usually used for classification tasks. Studies have rarely used it for image to image transformations.
We think it is a simple but powerful experiment to prove the capability of the model for the multiple
to one relationship, which has not yet been extensively explored in the original paper.

Additionally, the paper has mentioned in order to capture the full entropy of the conditional distribu-
tions that the cGAN models, we need to design a cGAN that produces stochastic output. This allows
the same conditional input to produce different image content instead of one deterministic output.
This area has not been explored much, so we wanted to come up with some method to visualize this
problem better, and potentially improve the stochasticity of the output.

2 Background

2.1 Previous Studies

Generative Adversarial Network (GAN) is a kind of system consisting of two neural networks in-
vented by Ian Goodfellow [3]. One is a generator and another is a discriminator. In learning pro-
cedures, they will compete against each other and improve their results. GAN are widely used in
image generation. GAN has a feature that it treats each output pixels as conditionally independent
with other pixels given input images, in other words, GAN is learning a unstructured loss.

GAN networks have been proven to be much more effective than previous models in generating
realistic images, and have been widely studied in past few years[16] [17] [18]. To improve the
performance,Conditional Generative Adversarial Network (cGAN) [21] is often used in most recent
years. It is the conditional version of GAN. The discriminator would also take the source image as
input to make its decision, the performance is often better than GAN model alone [21].

Some groups have studied the image-to-image transformation problem with different methods. In
[19], they used multi-scale auto-regression to learn filters for the task. However, the application can
only be restricted to filters. In [20], they used a locally affine model to transform single outdoor
photo to photos at different times of a day. However, their model required a large amount of data
and it is restricted to the specific task. People also have applied cGAN to some fields. For example,
in [21], they used cGAN for tagging images. In [22], they used cGAN for video frame prediction.
The problem with all of these frameworks is that they were designed for one specific task.

2.2 For Replication

The paper we based our project on is ”Image-to-Image Translation Using Conditional Adversarial
Networks” [5]. It is based on a cGAN model. The main achievement of the paper [5] is that the
network automatically learns a loss function for their generative part of the model, which allows the
model to be versatile enough to all type of image-to-image translations. Therefore, we will try to
replicate the figures related to the different types of general loss functions they have compared in
the paper
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2.3 For Model Understanding

Additionally, previous study has shown that reconstructing images from convolutional layer can help
review simple local transformations [2]. Hence we have decided to use a similar approach to take a
deeper look at each layers of this network.

This paper tries to achieve universal tasks, such as labeled image to street scenes, BW image to color
image and edges to photos. These are mostly one image to one image transformations, we would
like to explore the multiple-to-one transformations using a variations of the MNIST dataset [10].
Unlike using the MNIST dataset for classification tasks, we will use it as an input and create as set
of 10 target images per experiment to achieve many-to-one mapping and see how well this network
can perform in this image-to-image translation process.

2.4 For Stochasticity

In previous research, [16] has tried to add Gaussian noise as an input to the generator in addition to
x, but both [5] and [12] found that the generator would simply learn to ignore the noise. Therefore,
[5] proposed to provide noise only in the form of dropout on several layers of the generator at
both training and test time. However, they observe very minor stochasticity in the output of their
nets. Hence we decided to build on top of their network, and further explore ways to improve the
stochasticity of the output for cGAN. We would like to further explore the concept of stochasticity
in terms of manipulating the dropout layers and potentially try to improve it.

3 Model

3.1 Introduction to cGANs

The conditional Generative Adversarial Network consists of two neural networks: a generator G and
a discriminator D. In this image-to-image translation problem, given a sample pair (X,T ), where
we call them input X and target T for example. The generator will take a sample X and a random
noise Z as input and try to generate an output Y that is as close to T as possible. This process can
be simplified as Equation 1. The goal is to train a good generator G that can do translations such as
from segmented images to photos.

Y = G(X,Z) (1)

The discriminator will take a pair (X,Y ) and try to figure out whether Y is a real target or a fake
target generated by the generator as is shown in Equation 2

D(X,Y ) =

{
1 D regards Y as a real target
0 D regards Y as a fake target

(2)

The loss function we will use to train the two networks are:

LD =
∑

−t log(D(x, y))− (1− t) log(1−D(x,G(x, z))) (3)

LG =
∑

−log(D(x,G(x, z))) (4)

We will try to find G∗ = argminGmaxDLcGAN (G,D), where

LcGAN = Ex,y∼pdata(x,y)[logD(x, y)] + Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, z)))] (5)

The general network that is used in [5] can be simplified as shown in Figure 1
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Figure 1: Generalized cGAN model

The loss functions we use for G and D are binary cross entropy. When adding L1 loss on top of G
part of the cGAN model, we use mean absolute error as the loss function. These are consistent with
[5].

3.2 Structure Visualization

The two networks both are consist of a general structure: convolution-BatchNorm-ReLu.

For the generator G, it has a tanh activation function in the output layer. We will use the U-Net
model described in [13]. So layer n − i will have a connection with layer i as shown below. In the
network, both of the input and output dimensions are 128× 128× 3 scaled images with pixel values
scaled to zero-mean between -1 to 1. The detailed model graph is shown in Appendix A and in the
code section.

128× 128 64× 64 · · · · · · 4× 4 2× 2

1× 1

2× 24× 4· · · · · ·64× 64128× 128

conv conv conv conv
conv

deco
nv

deconvdeconvdeconvdeconv

Figure 2: Structure of the generator network

For the discriminator, D, it will have a sigmoid activation function in the output layer. So the output
would be the probability of Y as a real target. The detailed model graph is shown in Appendix B
and in the code section.
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128× 128 64× 64 · · · · · · 4× 4 1× 1
conv conv conv sigmoid

Figure 3: Structure of the discriminator network

The entire cGAN model is shown in Appendix C.

3.3 Datasets

Two datasets will be used in this report. The summary is shown in Table 1. The CMP Facade
Database [15] will be used to replicate three figures from the paper as well as for network under-
standing and stochasticity improvement. The new sets of MNIST dataset will be used to better
understand and explore the visual translation capabilities of this network.

Table 1: Dataset summary.

# Dataset Name Task Train No. Test No. Input Dimension
CMP Facades[15] Architectural labels↔ photo 378 228 256× 256× 3

MNIST Hand-written↔ Thick font 1000 200 128× 128× 3
MNIST Hand-written↔ Thin font 1000 200 128× 128× 3
MNIST Hand-written↔ Chinese number 1000 200 128× 128× 3

3.3.1 CMP Facades

The paper [5] used the Cityscapes dataset [1] for most of the main findings. However the datasets
provided by the authors in [6] contain noise in their labeled images, which may be introduced by
converting image format from png to jpg. This made it impossible for us to replicate the FCN-
scores, hence we have decided to obtain and use images from the original source. However, the
original Cityscapes dataset requires manual permission to be used for research and we were not able
to obtain that in time. Hence, we eventually used Facade dataset instead. The Facade dataset is the
only other dataset the paper worked on that is a task of transformation from labels to photos, which
we could use to reproduce the FCN-scores.

After scaling, the pixel values are further preprocessed to be between -1 and 1.

The data is labeled with 12 classes including:

• facade

• molding

• cornice

• pillar

• window

• door

• sill

• blind

• balcony

• shop

• deco

• background

There are two sets of original data: CMP facade DB base (378 images), and CMP facade DB
extended (228 images). The paper used 400 images for training and 100 images for validation
and 106 images for testing. We have decided to use the 378 CMP facade DB base for training, and
the 228 CMP facade DB extended for testing for easy mangement between 4 teammates.
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An image sample from the facades dataset has been shown in 4. The image on the right is the photo
of the city that we are trying to generate, the labeled segmented image on the left will be our input
information.

Figure 4: Sample image from Facades. The mapping we are trying to replicate here is from left to
right.

3.3.2 New MNIST

We have used the original MNIST dataset as the input, and created four sets of outputs to test out the
network’s capability of visual font formatting and language translation. The input and target image
samples are shown as follows in Figure 5.
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Input Thick Font 1 Thick font 2 Think Font Chinese Characters

Figure 5: Datasets used for MNIST training. The inputs are the original MNIST hand-writings. The
right three columns are four types of targets we are trying to acquire through the network on.

3.4 Software

The original code was written in Lua [11] with the Torch library [14], which is available publicly at
[6]. We duplicated their structure in Keras [7] shown in the code section.

4 Evaluation Methods

4.1 For Model Replication

4.1.1 Visual Appearance

We will generate real-looking images based on 228 labeled test Facade image across five loss func-
tions. The visual appearances of blurriness, realistic features, details of the output among different
models in Lua and Keras code will be compared.
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4.1.2 FCN-score

FCN-score is proposed in Fully Convolutional Networks for Semantic Segmentation [9]. To cal-
culate the FCN-score, we need to use a segmentation network which takes real image as input and
label image as teaching signal. The structure of that network is shown as Figure 6.

We found that the upper part of FCN is exactly the same as VGG16 network, except two fully-
connected layers fc6 and fc7 are replaced by fully convolutional network. It is interesting to notice
that the weight retrieved from pretrained VGG16 network can be used here with proper network
surgery. The lower part of FCN is especially designed for segmentation recognition. They use Fuse
layers to merge output from two different layers and use Upscore layers to deconvolute the image.
At the end, there is a Softmax layer to generate image label pixel-wisely.

There are three kinds of scores that we are curious about: per-pixel accuracy, per-class accuracy, and
IoU(Intersection over Union) accuracy, which can be measured by taking the semantic segmentation
of our predicted images and ground truth images to construct a confusion matrix. Suppose after
segmentation, there are n labels for each pixel, confusion matrix is a n × n matrix, where its (i, j)
element Ci,j is the number of pixels whose true label is i and predicted label is j. We denote by
Gi =

∑n
j=1 Ci,j , the total number of pixels labelled with i, where n is the number of classes, and

by Pj =
∑n

i=1 Ci,j , the total number of pixels whose prediction is j.

Per-pixel accuracy is the proportion of pixels whose label prediction is correct, so it’s equal to the
trace of confusion matrix divided by the sum of all entries in confusion matrix.

per-pixel =
∑n

i=1 Cii∑n
i=1 Gi

(6)

Per-class accuracy measures the proportion of correctly labelled pixels for each class and then aver-
ages over the classes.

per-class =
1

N

n∑
i=1

Cii

Gi
(7)

IoU accuracy measures the intersection over the union of the labelled segments for each class and
averages over the classes.

IoU =
1

N

n∑
i=1

Cii

Gi + Pi − Cii
(8)

The detailed procedure of evaluating FCN-score can be summarized as follows.

1. Train on 378 image pairs (real image, label image) from Based Facade Images for 30
epochs.

2. Predict on 228 real images from Extended Facade Images to produce predicted label im-
ages. Then, evaluate the accuracy between predicted label images and corresponding label
images as ground truth score.

3. Predict on 228 synthetic real images generated from different models to produce predicted
label images. Then, evaluate the accuracy between predicted label images and correspond-
ing label images as model score.

4.1.3 Color Distribution

The author mentioned that, L1 loss tended to be minimized by choosing the median conditional
probability density function when it’s uncertain which color it should take, so it will cause the
image to have some average and grayish effects. On contrast, cGAN will distinguish the grayish
color from real color, thus it will encourage the output to have as closest color distribution as the
ground truth.

Images with high similarity should have similar color distribution. Thus, it is an intuitive way to
measure the model performance. We specifically measure the distribution in CIELAB color space
[4], which consists of L, a, and b.
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Figure 6: Fully Convolutional Network for Image Segmentation
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4.2 For Model Understanding

For Image reconstruction and the output of the set of new datasets for MNIST transformations, we
only evaluated them based on their visual appearance.

4.3 For Stochasticity

Stochasticity is hard to measure. We found no literature mentioning how to systematically and
quantitatively evaluate how stochastic a GAN image output is so far. To evaluate the stochasticity,
we need to feed the same image to the generator several times and get a series of generated images
with same source. We came up with three methods of our own designs. The most simple way is
by looking at generated images with same source to figure out their variations. This method could
provide some intuition about the randomness of outputs. The two other methods are using histogram
and PCA.

4.3.1 Histogram

We plotted the histogram for pixel values of the generated images with same source on the same
figure. This enabled us to get a distribution of pixel values for each generated images. By plotting
them on the same histogram, we can get a clear view of the variation. In this experiment, we
generated 5 images for the same input sample. For the pixel values, we combined all RGB channels
and the values are in the range of [0, 255] which are separated into 16 bins for the histogram.

4.3.2 PCA

We used PCA to reduce the dimension of generated images from 256 × 256 × 3 to 2 in order to
visualize the distribution of these generated images in 2D space. By looking at the clustering of
different models, we can see if the spread of the data has increased or not. If the spread is small, we
think this represents the two images are closer to each other in the higher dimensions, thus not much
stochasticity are included; if the spread is large, then the models have increased the stochasticity.

5 Experiment & Results

5.1 For Model Replication

To replicate the major accomplishment of this paper, we have covered the FCN-scores, the output
images, and color distributions of [5] to verify our replication code. To make it comparable, we used
the Facades dataset instead of the Cityscapes dataset as is shown from [5].

To be consistent wit the paper, we will run the same set of 5 types of loss functions.

• generator + L1 loss (’mean absolute error’) alone
• GAN(Generative adversarial networks)
• cGAN
• GAN + l1
• cGAN + l1

5.1.1 Visual Appearance

We use the Facades dataset with size of 256 × 256 × 3 as inputs. The batch size is set to be 32 for
faster process (original paper used 8), and the results are acquired after 200 epochs for both Lua and
Keras code. All other hyper-parameters remain consistent with the original paper.

The generated images from the original Lua code for the Facades dataset are compared with images
from the Keras implementation.

• The result of Figure 7 shows that it confirms the findings from the paper. The generator
alone with L1 loss encourages averaging and produces a blurred grayish result, whereas
using a cGAN pushes the output distribution closer to the ground truth.
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• The result of Figure 8 shows what we have acquired from the our Keras model. The resuls
are not what we have expected, it seems like with L1 turned on in our model, all results
look similar with or without the discriminator part of the network, whereas by setting L1
loss weight to 0 in the GAN model, we get almost no feedback information from the target
images.

This difference indicates that the way we are routing our generator and discriminator together in the
GAN model does not seem to be working as expected.

1. First, We have generated 228 images from the test set use Lua code shown here in Figure 7
after 200 epoch.

Input Ground truth GAN cGAN

L1 L1 + GAN L1 +cGAN

Figure 7: Test result for different loss functions from their Lua model. Each column shows results
trained under a different loss. The models used were trained over 200 epochs

2. Then, we have acquired the same sets of results for our Keras code in Figure 8.

Input Ground truth GAN cGAN

L1 L1 + GAN L1 +cGAN

Figure 8: Test result for different loss functions from our Keras model. Each column shows results
trained under a different loss. The models used were trained over 200 epochs

5.1.2 FCN-score

Here, we compare the results between 5 models — L1, GAN, cGAN, L1+GAN, L1+cGAN imple-
mented in both lua and Keras, as recorded in Table 2 and 3, respectively.
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Loss Per-pixel acc. Per-class acc. Class IOU
L1 0.42 0.14 0.08
GAN 0.36 0.13 0.07
cGAN 0.35 0.11 0.07
L1+GAN 0.43 0.18 0.11
L1+cGAN 0.43 0.18 0.11
Ground Truth 0.52 0.32 0.22

Table 2: FCN-score For Facade (modeled in lua)

Loss Per-pixel acc. Per-class acc. Class IOU
L1 0.47 0.24 0.15
GAN 0.25 0.13 0.06
cGAN 0.39 0.14 0.07
L1+GAN 0.47 0.27 0.16
L1+cGAN 0.43 0.26 0.14
Ground Truth 0.52 0.32 0.22

Table 3: FCN-score For Facade (modeled in keras)

5.1.3 Color Distribution

We ran the algorithm in Lua and Keras and put experiments on 5 kinds of models: generator + L1
alone, cGAN, GAN, GAN + L1 and cGAN + L1. Figures 9 and 10 show the color distribution of lua
and Keras respectively. In the figures, we compare the color distribution of generator + L1 alone,
cGAN, GAN, GAN + L1 and cGAN + L1 to see if our model’s outputs are close to ground truth.
We can see that L1 leads to narrower color distribution and cGAN (GAN) has the opposite effect: it
makes the outputs more colorful.

L space a space b space

Figure 9: Lab color distribution for lua

L space a space b space

Figure 10: Lab color distribution for Keras

12



5.2 For Model Understanding

We want to try to understand how this model works. Therefore, we acquired some image-
reconstruction techniques from [2] to visualize the internal layers. Additionally, we designed a
couple new sets of MNIST transformations to further test out the capabilities of this network.

5.2.1 Reconstruction

To get a better understanding of how the networks work, we reconstructed the images at different
layers through the generator model to visualize the results at internal layers.

Here, after the model is trained, the reconstruction is defined as finding the image that will produce
close activation at the layer as the sample. Say we want to reconstruct at layer 5. We first chose one
sample image and fed it to the trained network to get the activation at layer 5. This activation was
used as the target. Then we initialized a white noise image and forwarded it to layer 5. The mean-
squared-error was calculated compared to the target. Then we fixed the weights of the networks
and back-propagated the error to update the noise image.After a number of iterations, we gained the
reconstructed image at that layer.

We reconstructed at layer 1, 5, 8, 11 and 14 for both label to image and image to label model trained
on the facades dataset. Figure 11 and Figure 12 shows some of the reconstructed images.

original layer1 layer 5 layer 8 layer 11 layer 14

Figure 11: Reconstruction results from different layers for label as input

original layer1 layer 5 layer 8 layer 11 layer 14

Figure 12: Reconstruction results from different layers for image as ainput

5.2.2 New MNIST dataset

The reason why we choose to transform MNIST dataset is because is it easily available, and it
contains minimal features which normally requires less training time. Traditionally, MNIST dataset
is often used for classification evaluations, here we use it for an image-to-image task to open up
new opportunities for this network. If this transformation works seamlessly, it can potentially be
used to transform bad information to better information to better assist other complicated machine
learning tasks.

We decided to transform the MNIST dataset into two different type of fonts because we wanted to
test two types of transformation, one is thickening the digits to fill a space near the lines since the
task is to map the thin hand-written digits to a thicker font. The other one is to re-configure the
image since it is mapping to a thinner font. Then we decided to tune up the difficulty level so that
the mapping becomes similar to digits translation between languages. For Think Target 1 and 2, we
are comparing the transformation of structure with or without color a the same time.

We have run the network on the new MNIST datasets and acquired the following images after 100
epoch in Figure 13. It seems like the model performed really well on all datasets.
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Input Thick Output 1 Thick Output 2 Thinner Font Output Chinese Characters Output

Figure 13: Datasets used for MNIST training. The inputs are the original MNIST hand-writings.
The right four columns are four types of outputs we have generated after 100 epoch.

5.3 For Stochasticity

This task was mentioned in the paper, and it was a general problem in the field of generative models.
Therefore, we have decided to explore it further and see if we can make improvement. For improving
the stochasticity, we made the following experiments.

• [5] mentioned that their random noise is introduced in the form of dropout layers. There-
fore, in order to increase the stochasticity, we wanted to first increase the dropout rate
further to see if that helps with the performance. The dropout rates are: no dropout, 0.5,
0.8.

• Instead of dropout layer which will zero out inputs, we randomize the inputs based on
certain distribution to increase randomness. The baseline is a uniform distribution ranged
from [-1, 1] of the original value. The randomize rate is set to 0.5.

• Additionally, we used a normal distribution with adjustable variance to do randomization.
We tried with mean 0 and standard deviation of 0.2 and 0.4.

The results for stochasticity are shown as follows:
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5.3.1 Generated Images

For the input image and target image Figure 14, we generated 5 images with each of the models
mentioned above. The results are shown in Figure 15.

Figure 14: Input label and target image for testing stochasticity

no dropout

dropout (p = 0.5)

dropout (p = 0.8)

uniform

normal (stdv = 0.2)

normal (stdv = 0.4)

Figure 15: Generated images from the same source with different models for testing stochasticity

The quality of the generated images may look a little poor. The reason is limited time and resources
so that we don’t have enough time to train the models to generate good looking results. Given
more time, the quality of the generated images could increase. The quality could be compared with
a relative criterion. The dropout (p = 5) model is the default model used in [5]. So all models
generate comparable quality images with the original model. In this part, we will focus more on the
stochasticity.

As we can see, no dropout model generated 5 same images. All other models generate images with
some extent of variations.
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5.3.2 Histogram

The reason why we chose Histogram over pixel information is because it is fairly easy way to
visualize if there is any difference in the images we are looking at. Admittedly, this method loses a
lot of information in high dimensional space. Hence we have decided to try dimensionality reduction
as our next experiment on this topic.

As mentioned above, we plotted the histogram of pixel values for the 5 images generated from the
same source. The results are shown as follow.

Figure 16: Histogram of pixel values for 5 generated images for no dropout model

Figure 17: Histogram of pixel values for 5 generated images for dropout (p = 0.5) model
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Figure 18: Histogram of pixel values for 5 generated images for dropout (p = 0.8) model

Figure 19: Histogram of pixel values for 5 generated images for uniform model
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Figure 20: Histogram of pixel values for 5 generated images for normal (stdv = 0.2) model

Figure 21: Histogram of pixel values for 5 generated images for normal (stdv = 0.4) model

5.3.3 PCA

Because our previous Histogram result did not show much difference between different models, and
we are looking at the variance between images, PCA as a dimension-reduction tool that maximizes
variance is our first choice for dimension reduction. It helps us to project information onto a 2D
space.

In this experiment, we generated 30 images for each model with the same original image. They are
then dimension-reduced to 2-dim points. The results are shown in Figure 22.
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Figure 22: Generated images plot in 2-dimensional space

6 Discussion

6.1 For Model Replication

6.1.1 Visual appearance

We have duplicated the results for the Facades dataset using both the original Lua code and our
Keras model. Here are some thoughts on why our code did not perform as well as the Lua code.

First of all, we notice that in the original Lua code, the backpropagation from the discriminator to
generator is truncated, so that the derivatives for the conditional labeled image will not be combined
with the derivatives for the target image. We concated our result the same way the paper did, but
due to the nature of Keras, we did not have enough time to look at the Keras backend and to make
sure the same derivaties have been routed the same way. This may be contributing to the reason
why there appears no target information in the output of our GAN and cGAN models.

Secondly, we have turned the weight for the generator loss to be 0(no L1 loss) or 100(with L1 loss)
in the final GAN model, which is similar to what they did in the paper. However, for our GAN and
cGAN model it seems like there is no target information being use for the adjustment, whereas there
seem to be no difference among L1, L1+GAN and L1+cGAN models. This indicates the Keras
weight system may behave differently than what we have expected. Additionally, they have added
their 100 weight onto the descriminator part of the derivative for the generator, whereas the weight
we assigned might have been added at the final loss of the discriminator. This explains why the L1
effect might be over-powering through for GAN and cGAN models as well.

In summary, to fix or verify these hypothesis for potential bugs in the Keras code, we need to explore
the backend of Keras further to make sure everything is passed through as what we expected, and
we add weights at the location that we wanted for back-propagation. Unfortunately, we did not have
that time to explore further.
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6.1.2 FCN-score

For cGAN and some of its variances, they regard label images as input and real images as teaching
signals while training. In the testing phase, the generative model will generate some synthetic real
images as output, whose performance will then be evaluated by FCN model. On the other hand,
FCN model takes real images as input and label images as teaching signals in training phase and
evaluate synthetic real images by segmenting those real images. If the segmented real images have
high similarity to origin label images, then we can conclude that cGAN model does generate some
reliable synthetic real images.

This framework seems robust and reasonable to us in the beginning. However, we find that the
labeled images in the given dataset contain too much noise and not well-formed, which makes FCN
model impossible to learn and evaluate the cGAN model performance.

In view of this, we try to use a universal way to denoise these noisy label images, which are stored in
RGB mode with 3 channels, and map them back to the correct label space, which consists of only
1 channel. It is noticeable that the denoise procedure must be consistent for all images, which kept
us from using Gaussian or other filters to smooth the image; otherwise, we will still have trouble
in mapping images back to label space. At the end, we try to do the direct mapping by picking the
closest label with the smallest Euclidean distance error. Unfortunately, the image is still too noisy
for us to recover. One of the noisy label images and its corresponding recovered label image are
shown in Figure 23a and Figure 23b.

(a) Noisy Label Image (b) Recovered Label Image

Figure 23: Trial of Recovering Image with Smallest Euclidean Distance

With the failure to recover label image, we at the end need to download the data from official web-
sites and do all image preprocessing works, i.e. image resizing to (256× 256 pixels) by ourselves.

From the results, one can tell that L1 regularization plays a very important role here. Without L1
term, the accuracy for both GAN and cGAN model drops significantly. Combined the scores from
both tables, we can see the general model performance trend as: L1+GAN ≥ L1+cGAN > L1 >
cGAN ≥ GAN, which is aligned to the results from previous paper.

When compared the results generated from lua and Keras, we can see a clear trend that Keras gen-
erated images have higher scores than lua ones, which is then straightforward for us to infer Keras
models have better performance. However, when visualizing the image, we find out an interesting
phenomenon: image generated from Keras are more similar to label, which might greatly enhance
its FCN-score. It is then crucial for us to also take the results of color distribution into consideration.
More details about the difference between Keras and lua models will be discussed in the following
sections.
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6.1.3 Color Distribution

We can see from Figures 9 and 10 that L1 has the effect to narrow the spectral distribution of output
images when it’s uncertain which value to take when there are several values, so it will choose the
median and make the network simpler.

Interestingly, we can see from the a and b color space distribution that cGAN leads to wider color
distribution than ground truth, which means cGAN will make the output images more colorful, even
though it doesn’t exist in the original images.

Combined the results of color distribution with the results of FCN-scores, we can conclude that,
because L1 regularization has the effect to narrow the spectral distribution and cGAN (GAN) will
make the image more colorful, we need to combine cGAN or GAN with L1 regularization to get
better performance.

Compare the result of color distribution of lua and Keras, we can see that for a and b color space,
Keras produces wider spectral properties for GAN and cGAN but on the other hand narrower spectral
properties for L1, cGAN+L1 and GAN+L1. So GAN and cGAN of Keras produces more colorful
and distinguishable outputs than lua, Keras has lower FCN-scores for GAN and cGAN. While L1,
cGAN+L1 and GAN+L1 for Keras produces narrower and closer color distribution to ground truth,
thus L1, cGAN+L1 and GAN+L1 for Keras have higher scores than lua.

6.2 For Model Understanding

6.2.1 Reconstruction

Reconstruction provided us with a way to visualize the internal representations of the networks.
From the reconstruction results we found that as the network goes deeper, the reconstructed image
becomes more randomized. As discussed in the model part, we are using an encoder-decoder model
with u-net structure. So as the encoder goes deeper, the network learns its own internal representa-
tion of the image. The u-net connection from higher layer to lower layer helps the network to keep
a good representation of the position and structure of the original image for generating the output
image.

The reconstruction result is consistent with the reconstruction result of real images in this paper
[2]. This verifies that the type of transformation: label to photos is a much more complicated
transformation than artistic styles. We cannot simply visualize the networks by reconstructing the
image from different convolutional layers. Because the transformation is in a global scale, we were
not able to visualize simple local transformations.

6.2.2 MNIST Dataset

The MNIST results in 13 shows that all 4 scales of transformations have been accomplished by the
network with minimal effort. This verifies that the network is great at performing multiple-to-one
transformation. Due to lack of stochasticity, we took advantage of the deterministic nature of the
network, and successfully transformed the given hand-written digits to different fonts(fattening or
slimming) as well as characters with a complete different shape (Chinese characters) in a different
color. This also verifies that the transformation is not one-to-one, and it is really versatile. At the
beginning of the network we can observe that after the first epoch with 32 images per batch as shown
in 24, the output is mostly capturing the input; however, after 7 epochs as shown in 25, we can see
that the network is trying to head to the direction of translating both of the color and shape towards
the target. After roughly 10 epoch or so, the majority of the test output is already able to capture the
target pretty accurately.

Additionally, it doesn’t seem like the network behaves differently among the three tasks we have
designed here. We think this may indicate that multiple-to-one mapping is too simple a task for the
network. The difficulty level of the image does not really matter for this type of task, especially
when the number of colors in the images are very limited.

These results are encouraging and provide evidence that this network can be potentially used for
data preprocessing for other more complicated machine learning problems.
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Figure 24: Images from first epoch of samples in batch of 32, and size of 128× 128× 3. The order
of the images are from left to right: Input, Target, Output.

Figure 25: Images from 7th epoch of samples in batch of 32, and size of 128× 128× 3. The order
of the images are from left to right: Input, Target, Output.

The MNIST dataset is a very small dataset, which is much easier for the network to capture the
transformation of this task; however this proves the potential of the network in the field of many-
to-one mapping. This specific experiment proves that this network can be further used for language
visual translation with much more complicated datasets.

6.3 For Stochasticity

6.3.1 Histogram

From the histograms, we get a general information about the pixel value distribution of the generated
images. However, we don’t see a significant difference in the extent of variations for all models
except the no dropout one. So, we conclude that histogram of pixel values may not be a proper
evaluation for stochasticity of the model.

6.3.2 PCA

As we can see from Fig 22, the images generated by the no dropout model all mapped into one
point. We ranked them in spreading size: dropout (p = 0.8) ≥ uniform ≥ normal (stdv = 0.4) >
dropout (p = 0.5) ≥ normal (stdv = 0.2) > no dropout. This reflects the stochasticity of the models
to some extent. Combined this result with the visual results, we found that the randomizing layer
we designed helps to increase the stochasticity of the model. Different distribution models with
different parameters could lead to different results. The detailed difference needs more experiments
and studies to discover.
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7 Concept and/or Innovation

1. We have attached image visualization pipeline to the original model to visualize what is under-
neath the hood of this universal image-to-image transformation network.

2. We have applied the network on a new MNIST dataset to evaluate multiple-image-to-one capa-
bility of this model, and proved that it is truly powerful, and it has much more potentials in foreign
language translations, etc. This result has shown that the network can be potentially used to translate
bad data input (noisy information) into better images. Hence it can potentially help other tasks in
the field of Machine Learning.

3. Additionally, we did implement the model in Keras, and improved the stochasticity with a newly
innovated layer added to the model.

8 Summary

In this report, we explored the capabilities of cGAN network in the image-to-image translation
problems and compared the performance of different loss functions: L1, GAN, cGAN, GAN+L1,
cGAN+L1. We used several different methods to evaluate the performance of the network: visual
appearance, FCN-scores, color distribution. From the FCN-scores, the L1+GAN model generated
best results. To get more understanding of what the network is doing, we reconstruct the activations
in different layers. We also used the cGAN network to do some multiple image to one image
tasks on some newly created MNIST transformation datasets. To increase the stochasticity, we have
tried different dropout rate, add randomized layers to the models. To evaluate the stochasticity, we
compared the outputs visually, drew histograms and used PCA to visualize the randomness of the
generated images. The randomized layer increased the stochasticity of the model.

9 Individual Contributions

Hao-en and Haifeng are in charge of FCN-score and Color Distribution measurement. Shiwei and
Sainan are in charge of duplicating Keras code and test out the stochasticity improvement.

Acknowledgments

We would like to thank Amazon for the resources and the Professor and the teaching staff’s help
throughout our project.

23



References
[1] Cordts,M., Omran,M., Ramos, S.,Rehfeld, T.,Enzweiler,M., Benenson,R. ,Franke, U., Roth, S. & Schiele,

B. (2016). The cityscapes dataset for semantic urban scene understanding. CVPR

[2] Gatys, L.A., Ecker, A.S., Bethge, M. (2015). A Neural Algorithm of Artistic Style.

[3] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio,
Y. (2014). Generative Adversarial Networks

[4] Hoffmann, G. (2013). CIELab Color Space
http://docs-hoffmann.de/cielab03022003.pdf

[5] Isola, P., Zhu, J., Zhou, T. & Efros, A.A., (2016). Image-to-Image Translation with Conditional Adversarial
Networks.
https://arxiv.org/pdf/1611.07004v1.pdf
https://github.com/shelhamer/fcn.berkeleyvision.org

[6] Isola, P. Zhu, J., Zhou, T. & Efros, A.A. (2016). pix2pix datasets,
http://people.eecs.berkeley.edu/ tinghuiz/projects/pix2pix/datasets/

[7] Keras, Deep learning library for Theano and Tensorflow
https://Keras.io/

[8] Laurens, M. & Hinton, G. (2008) Visualizing Data using t-SNE

[9] Long, J, Shelhamer, E. & Darrell, T. (2015) Fully convolutional networks for semantic segmentation.”
Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionCVPR, pages 3431 3440.
https://github.com/shelhamer/fcn.berkeleyvision.org

[10] LeCun, Y., Cortes, C., Burges, C. J.C. (accessed on 2017) The MNIST database of handwritten digits

[11] Lua, an embeddable scripting language.
http://www.lua.org/

[12] Mathieu,M., Couprie, C.,& LeCun, Y. (2016) Deep multi-scale video prediction beyond mean square
error ICLR

[13] Ronneberger,O., Fischer, P. & Brox, T. (2015)U-net: Convolutional networks for biomedical image seg-
mentation. MICCAI, pages 234241. Springer

[14] Torch, a scientific computing framework for LUAJIT
http://torch.ch/

[15] Tylecek, R., Sara, R. .(2013) Spatial Pattern Templates for Recognition of Objects with Regular Structure.
CVPR

[16] Wang, X. & Gupta,A.(2016) Generative image modeling using style and structure adversarial networks
ECCV

[17] Denton, E.L., Chintala, S. Fergus, et al. (2015)Deep generative image models using a laplacian pyramid
of adversarial networks. NIPS

[18] Radford, A. Metz, L. and Chintala S. (2015) Unsupervised representation leraning with deep convolu-
tional generative adversarial networks.

[19] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. (2001) Image analogies. In SIG-
GRAPH, pages 327340. ACM.

[20] Y. Shih, S. Paris, F. Durand, and W. T. Freeman. (2013) Data-driven hallucination of different times of
day from a single outdoor photo. ACM Transactions on Graphics (TOG), 32(6):200.

[21] M. Mirza and S. Osindero. (2014) Conditional generative adversarial nets.

[22] M. Mathieu, C. Couprie, and Y. LeCun. (2016) Deep multi-scale video prediction beyond mean square
error. ICLR.

24



Appendices
A Generator Model Detail

Model graph for Generator:
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Figure 26: Keras model for generator G - model1
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B Discriminator Detail

Figure 27: Keras model for discriminator D - model 2
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C cGAN Detail

Figure 28: Keras model for cGAN
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Codes

Codes developed so far

Listing 1: model.py for generator discriminator and combined GAN model
1 from k e r a s . models import Model , S e q u e n t i a l
2 from k e r a s . l a y e r s import A c t i v a t i o n , I n p u t , Reshape , merge , Lambda , Dropout , F l a t t e n , Dense
3 from k e r a s . l a y e r s . c o n v o l u t i o n a l import Convolut ion2D , Deconvolut ion2D , ZeroPadding2D , Cropping2D
4 from k e r a s . l a y e r s . a d v a n c e d a c t i v a t i o n s import LeakyReLU
5 from k e r a s . l a y e r s . n o r m a l i z a t i o n import B a t c h N o r m a l i z a t i o n
6 from k e r a s . u t i l s . v i s u a l i z e u t i l import p l o t
7
8 import k e r a s . backend as K
9 import numpy as np

10
11 def conv ( x , nf , norm=True ) :
12 y = LeakyReLU ( 0 . 2 ) ( x )
13 y = ZeroPadding2D ( padd ing =( 1 , 1 ) ) ( y )
14 y = Convolu t ion2D ( nf , 4 , 4 , subsample = ( 2 , 2 ) ) ( y )
15 i f norm :
16 y = B a t c h N o r m a l i z a t i o n ( mode = 2 ) ( y )
17 re turn y
18
19 def deconv ( x , nf , o u t p u t s i z e , norm=True ) :
20 y = A c t i v a t i o n ( ’ r e l u ’ ) ( x )
21 y = Deconvolu t ion2D ( nf , 4 , 4 , o u t p u t s h a p e =( None , o u t p u t s i z e +2 , o u t p u t s i z e +2 , n f ) , subsample = (2 , 2 ) ) ( y )
22 y = Cropping2D ( c r o p p i n g = ( ( 1 , 1 ) , ( 1 , 1 ) ) ) ( y )
23 i f norm :
24 y = B a t c h N o r m a l i z a t i o n ( mode = 2 ) ( y )
25 re turn y
26
27 def g e n e r a t o r ( i n p u t s i z e =128 , n f =64 , p = 0 . 5 ) :
28 g i n p u t s = I n p u t ( shape =( i n p u t s i z e , i n p u t s i z e , 3 ) )
29
30 # 128 ∗ 128 ∗ 3
31 e1 = ZeroPadding2D ( padd ing =( 1 , 1 ) ) ( g i n p u t s )
32 e1 = Convolu t ion2D ( nf , 4 , 4 , subsample = ( 2 , 2 ) ) ( e1 )
33
34 # 64 ∗ 64 ∗ n f
35 e2 = conv ( e1 , n f ∗ 2)
36 # 32 ∗ 32 ∗ ( n f ∗ 2)
37 e3 = conv ( e2 , n f ∗ 4)
38 # 16 ∗ 16 ∗ ( n f ∗ 4)
39 e4 = conv ( e3 , n f ∗ 8)
40 e5 = conv ( e4 , n f ∗ 8)
41 # 8 ∗ 8 ∗ ( n f ∗ 8)
42 # 4 ∗ 4 ∗ ( n f ∗ 8)
43 e6 = conv ( e5 , n f ∗ 8)
44 # 2 ∗ 2 ∗ ( n f ∗ 8)
45 e7 = conv ( e6 , n f ∗ 8)
46 # 1 ∗ 1 ∗ ( n f ∗ 8)
47 g1 = deconv ( e7 , n f ∗ 8 , o u t p u t s i z e =2)
48 g1 = Dropout ( p ) ( g1 )
49 g1 = merge ( [ g1 , e6 ] , mode= ’ c o n c a t ’ , c o n c a t a x i s =−1)
50 # 2 ∗ 2 ∗ ( n f ∗ 8 ∗ 2)
51 g2 = deconv ( g1 , n f ∗ 8 , o u t p u t s i z e =4)
52 g2 = Dropout ( p ) ( g2 )
53 g2 = merge ( [ g2 , e5 ] , mode= ’ c o n c a t ’ , c o n c a t a x i s =−1)
54 # 4 ∗ 4 ∗ ( n f ∗ 8 ∗ 2)
55 g3 = deconv ( g2 , n f ∗ 8 , o u t p u t s i z e =8)
56 g3 = Dropout ( p ) ( g3 )
57 g3 = merge ( [ g3 , e4 ] , mode= ’ c o n c a t ’ , c o n c a t a x i s =−1)
58 # 8 ∗ 8 ∗ ( n f ∗ 8 ∗ 2)
59 g4 = deconv ( g3 , n f ∗ 4 , o u t p u t s i z e =16)
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60 g4 = merge ( [ g4 , e3 ] , mode= ’ c o n c a t ’ , c o n c a t a x i s =−1)
61 # 16 ∗ 16 ∗ ( n f ∗ 4 ∗ 2)
62 g5 = deconv ( g4 , n f ∗ 2 , o u t p u t s i z e =32)
63 g5 = merge ( [ g5 , e2 ] , mode= ’ c o n c a t ’ , c o n c a t a x i s =−1)
64 # 32 ∗ 32 ∗ ( n f ∗ 2 ∗ 2)
65 g6 = deconv ( g5 , nf , o u t p u t s i z e =64)
66 g6 = merge ( [ g6 , e1 ] , mode= ’ c o n c a t ’ , c o n c a t a x i s =−1)
67 # 64 ∗ 64 ∗ ( n f ∗ 2)
68 g7 = deconv ( g6 , 3 , o u t p u t s i z e =128 , norm= F a l s e )
69 g o u t p u t s = A c t i v a t i o n ( ’ t a n h ’ ) ( g7 )
70
71 G = Model ( input = g i n p u t s , o u t p u t = g o u t p u t s )
72 p l o t (G, t o f i l e = ’ . . / model / model G . png ’ , show shapes =True )
73 re turn G
74
75 def d i s c r i m i n a t o r ( i n p u t s i z e =128 , n f =64 , n l a y e r s = 3 ) :
76 d i n p u t s = I n p u t ( shape =( i n p u t s i z e , i n p u t s i z e , 6 ) )
77 # 128 ∗ 128 ∗ 6
78 d h i d d e n = ZeroPadding2D ( padd ing =( 1 , 1 ) ) ( d i n p u t s )
79 d h i d d e n = Convolu t ion2D ( nf , 4 , 4 , subsample = ( 2 , 2 ) ) ( d h i d d e n )
80 # 64 ∗ 64 ∗ n f
81 ndf = nf
82 f o r i in range ( n l a y e r s −1):
83 ndf = min ( n f ∗ 8 , ndf ∗ 2)
84 d h i d d e n = conv ( d h idden , ndf )
85 ndf = min ( n f ∗ 8 , ndf ∗ 2)
86 d h i d d e n = LeakyReLU ( 0 . 2 ) ( d h i d d e n )
87 d h i d d e n = ZeroPadding2D ( padd ing =( 1 , 1 ) ) ( d h i d d e n )
88 d h i d d e n = Convolu t ion2D ( ndf , 4 , 4 , subsample = ( 1 , 1 ) ) ( d h i d d e n )
89 d h i d d e n = B a t c h N o r m a l i z a t i o n ( mode = 2 ) ( d h i d d e n )
90 d h i d d e n = LeakyReLU ( 0 . 2 ) ( d h i d d e n )
91 d h i d d e n = ZeroPadding2D ( padd ing =( 1 , 1 ) ) ( d h i d d e n )
92 d h i d d e n = Convolu t ion2D ( 1 , 4 , 4 , subsample = ( 1 , 1 ) ) ( d h i d d e n )
93 d o u t p u t s = A c t i v a t i o n ( ’ s igmoid ’ ) ( d h i d d e n )
94 # d2 = conv ( d1 , n f ∗ 2)
95 # # 32 ∗ 32 ∗ ( n f ∗ 2)
96 # d3 = conv ( d2 , n f ∗ 4)
97 # # 16 ∗ 16 ∗ ( n f ∗ 4)
98 # d4 = conv ( d3 , n f ∗ 8)
99 # # 8 ∗ 8 ∗ ( n f ∗ 8)

100 # d5 = conv ( d4 , n f ∗ 8)
101 # # 4 ∗ 4 ∗ ( n f ∗ 8)
102 # d6 = conv ( d5 , n f ∗ 8)
103 # # 2 ∗ 2 ∗ ( n f ∗ 8)
104 # d7 = conv ( d6 , n f ∗ 8)
105 # # 1 ∗ 1 ∗ ( n f ∗ 8)
106 # d8 = F l a t t e n ( ) ( d7 )
107 # d8 = Dense ( 1 ) ( d8 )
108 # d o u t p u t s = A c t i v a t i o n ( ’ s i g m o i d ’ ) ( d8 )
109
110 D = Model ( input = d i n p u t s , o u t p u t = d o u t p u t s )
111 p l o t (D, t o f i l e = ’ . . / model / model D . png ’ , show shapes =True )
112 re turn D
113
114 def cGAN(G, D, i n p u t s i z e = 1 2 8 ) :
115 g a n i n p u t s = I n p u t ( shape =( i n p u t s i z e , i n p u t s i z e , 3 ) )
116 g o u t p u t s = G( g a n i n p u t s )
117 d i n p u t s = merge ( [ g a n i n p u t s , g o u t p u t s ] , mode= ’ c o n c a t ’ , c o n c a t a x i s =−1)
118 d h i d d e n = D. l a y e r s [ 1 ] ( d i n p u t s )
119 f o r i in range ( 2 , l e n (D. l a y e r s ) ) :
120 d h i d d e n = D. l a y e r s [ i ] ( d h i d d e n )
121
122 GAN = Model ( input = g a n i n p u t s , o u t p u t =[ g o u t p u t s , d h i d d e n ] )
123 re turn GAN
124
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125 i f n a m e == ” m a i n ” :
126 G = g e n e r a t o r ( )
127 D = d i s c r i m i n a t o r ( )
128 cGAN = cGAN(G, D)

Listing 2: preprocess.py for data preprocessing
1 from PIL import Image
2 import numpy as np
3 from os . p a t h import i s d i r
4 from os import m a k e d i r s
5
6 def p r e p r o c e s s ( x ) :
7 # S c a l e i n p u t 0 t o 255 t o −1 t o 1 .
8 func = np . v e c t o r i z e ( lambda x : x /127 .5−1)
9 re turn f unc ( x )

10
11 def d e p r o c e s s ( x ) :
12 # S c a l e o u t p u t −1 t o 1 back t o 0 t o 2 5 5 .
13 func = np . v e c t o r i z e ( lambda x : ( x + 1 )∗1 2 7 . 5 )
14 re turn f unc ( x )
15
16 def r e a d D a t a ( d a t a s e t = ’ . . / d a t a / c i t y s c a p e s / ’ , s i z e =128 , n t r a i n =1024 , n v a l i d = 1 2 8 ) :
17 p r i n t ( ” Reading Data . . . ” )
18 x t r a i n = np . empty ( [ n t r a i n , s i z e , s i z e , 3 ] )
19 y t r a i n = np . empty ( [ n t r a i n , s i z e , s i z e , 3 ] )
20
21 img = Image . open ( d a t a s e t + ’ t r a i n / 1 . j p g ’ )
22 w, h = img . s i z e
23 f o r i in range ( 1 , n t r a i n + 1 ) :
24 s = d a t a s e t + ” t r a i n / ” + s t r ( i ) + ” . j p g ”
25 img = Image . open ( s )
26 l img = img . c rop ( ( 0 , 0 , w/ 2 , h ) ) . r e s i z e ( ( s i z e , s i z e ) )
27 r img = img . c rop ( (w/ 2 , 0 , w, h ) ) . r e s i z e ( ( s i z e , s i z e ) )
28
29 x t r a i n [ i −1] = np . a r r a y ( r img . g e t d a t a ( ) ) . r e s h a p e ( s i z e , s i z e , 3 )
30 y t r a i n [ i −1] = np . a r r a y ( l img . g e t d a t a ( ) ) . r e s h a p e ( s i z e , s i z e , 3 )
31
32 x t e s t = np . empty ( [ n v a l i d , s i z e , s i z e , 3 ] )
33 y t e s t = np . empty ( [ n v a l i d , s i z e , s i z e , 3 ] )
34
35 f o r i in range ( 1 , n v a l i d + 1 ) :
36 s = d a t a s e t + ” v a l / ” + s t r ( i ) + ” . j p g ”
37 img = Image . open ( s )
38 l img = img . c rop ( ( 0 , 0 , w/ 2 , h ) ) . r e s i z e ( ( s i z e , s i z e ) )
39 r img = img . c rop ( (w/ 2 , 0 , w, h ) ) . r e s i z e ( ( s i z e , s i z e ) )
40
41 x t e s t [ i −1] = np . a r r a y ( r img . g e t d a t a ( ) ) . r e s h a p e ( s i z e , s i z e , 3 )
42 y t e s t [ i −1] = np . a r r a y ( l img . g e t d a t a ( ) ) . r e s h a p e ( s i z e , s i z e , 3 )
43
44 x t r a i n = p r e p r o c e s s ( x t r a i n )
45 y t r a i n = p r e p r o c e s s ( y t r a i n )
46 x t e s t = p r e p r o c e s s ( x t e s t )
47 y t e s t = p r e p r o c e s s ( y t e s t )
48
49 p r i n t ( ” F i n i s h ” )
50 p r i n t ( ” T r a i n i n g sample s : %d\ n T e s t i n g sample s : %d ”%( l e n ( x t r a i n ) , l e n ( x t e s t ) ) )
51
52 re turn x t r a i n , y t r a i n , x t e s t , y t e s t
53
54
55 def showImage ( x , y , gx , t i t l e = ’ image ’ , s i z e = 1 2 8 ) :
56 img = Image . new ( ”RGB” , ( s i z e ∗3 , s i z e ) )
57 im = np . append ( x , y , a x i s =1)
58 im = np . append ( im , gx , a x i s =1)
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59 im = l i s t ( im . r e s h a p e ( s i z e ∗ s i z e ∗ 3 , 3 ) )
60 im = [map ( i n t , z ) f o r z in im ]
61 im = map ( tup le , im )
62 img . p u t d a t a ( im )
63 img . show ( t i t l e )
64
65 def saveImage ( x , y , gx , t i t l e = ’ ’ , s a v e D i r = ’ ’ , s i z e = 1 2 8 ) :
66 img = Image . new ( ”RGB” , ( s i z e ∗3 , s i z e ) )
67 im = np . append ( x , y , a x i s =1)
68 im = np . append ( im , gx , a x i s =1)
69 im = l i s t ( im . r e s h a p e ( s i z e ∗ s i z e ∗ 3 , 3 ) )
70 im = [map ( i n t , z ) f o r z in im ]
71 im = map ( tup le , im )
72 img . p u t d a t a ( im )
73 i f not i s d i r ( s a v e D i r ) :
74 m a k e d i r s ( s a v e D i r )
75 img . save ( s a v e D i r + s t r ( t i t l e ) + ’ . png ’ )
76
77 i f n a m e == ’ m a i n ’ :
78 r e a d D a t a ( )

Listing 3: train.py for training sample code
1 from tqdm import ∗
2 from model import g e n e r a t o r , d i s c r i m i n a t o r , cGAN
3 from p r e p r o c e s s import r eadData , showImage , saveImage , p r e p r o c e s s , d e p r o c e s s
4 from k e r a s . models import Model
5 from k e r a s . o p t i m i z e r s import Adam
6 import numpy as np
7 from PIL import Image
8 import math
9 import k e r a s . backend as K

10
11
12 EPOCH = 50
13 BATCH SIZE = 8
14 N FILTER = 64
15 N LAYER = 4
16 L1 WEIGHT = 100
17 N TRAIN = 2968
18 N VALID = 256
19 INPUT SIZE = 128
20 DATASET = ’ . . / d a t a s e t s / c i t y s c a p e s / ’
21
22 G = g e n e r a t o r ( n f =N FILTER )
23 D = d i s c r i m i n a t o r ( n f =N FILTER , n l a y e r s =N LAYER)
24 GAN = cGAN(G, D)
25
26 G optim = Adam( l r =0 .0002 , b e t a 1 = 0 . 5 )
27 G. compi le ( o p t i m i z e r =G optim , l o s s = ’ b i n a r y c r o s s e n t r o p y ’ )
28 G. summary ( )
29
30 D optim = Adam( l r =0 .0002 , b e t a 1 = 0 . 5 )
31 D. compi le ( o p t i m i z e r =D optim , l o s s = ’ b i n a r y c r o s s e n t r o p y ’ )
32 D. summary ( )
33
34 GAN. compi le ( o p t i m i z e r =G optim , l o s s =[ ’ m e a n a b s o l u t e e r r o r ’ , ’ b i n a r y c r o s s e n t r o p y ’ ] , l o s s w e i g h t s =[L1 WEIGHT , 1 ] )
35
36 x t r a i n , y t r a i n , x v a l i d , y v a l i d = r e a d D a t a ( d a t a s e t =DATASET, n t r a i n =N TRAIN , n v a l i d =N VALID , s i z e =INPUT SIZE )
37
38 p a t c h s i z e = D. o u t p u t s h a p e [ 1 ]
39
40 r e a l l a b e l = np . a r r a y ( [ 1 ] ∗ BATCH SIZE ∗ p a t c h s i z e ∗ p a t c h s i z e ) . r e s h a p e ( BATCH SIZE , p a t c h s i z e , p a t c h s i z e , 1 )
41 f a k e l a b e l = np . a r r a y ( [ 0 ] ∗ BATCH SIZE ∗ p a t c h s i z e ∗ p a t c h s i z e ) . r e s h a p e ( BATCH SIZE , p a t c h s i z e , p a t c h s i z e , 1 )
42
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43 r e a l v l a b e l = np . a r r a y ( [ 1 ] ∗ l e n ( x v a l i d ) ∗ p a t c h s i z e ∗ p a t c h s i z e ) . r e s h a p e ( l e n ( x v a l i d ) , p a t c h s i z e , p a t c h s i z e , 1 )
44 f a k e v l a b e l = np . a r r a y ( [ 0 ] ∗ l e n ( x v a l i d ) ∗ p a t c h s i z e ∗ p a t c h s i z e ) . r e s h a p e ( l e n ( x v a l i d ) , p a t c h s i z e , p a t c h s i z e , 1 )
45
46 p r i n t ( ” S t a r t t r a i n i n g ” )
47 p r i n t ( ” Batch s i z e = %d ”%(BATCH SIZE ) )
48 p r i n t ( ” # o f f i l t e r f o r f i r s t l a y e r = %d ”%(N FILTER ) )
49 p r i n t ( ” # o f l a y e r f o r d i s c r i m i n a t o r = %d ”%(N LAYER ) )
50 p r i n t ( ” lambda f o r L1 = %d ”%(L1 WEIGHT ) )
51
52 f o r epo in range ( 1 , EPOCH+ 1 ) :
53 p r i n t ( ” Epoch %d/%d ”%(epo , EPOCH ) )
54 t r a i n s i z e = l e n ( x t r a i n )
55 v a l i d s i z e = l e n ( x v a l i d )
56 n b a t c h = t r a i n s i z e / BATCH SIZE
57
58 # t r a i n on b a t c h
59 f o r i in tqdm ( range ( n b a t c h ) ) :
60 x b a t c h = x t r a i n [ i ∗BATCH SIZE : ( i +1)∗BATCH SIZE ]
61 y b a t c h = y t r a i n [ i ∗BATCH SIZE : ( i +1)∗BATCH SIZE ]
62
63 gen = G. p r e d i c t o n b a t c h ( x b a t c h )
64 f a k e = np . append ( x b a t c h , gen , a x i s =3)
65 r e a l = np . append ( x b a t c h , y b a t c h , a x i s =3)
66
67 D. t r a i n a b l e = True
68 D. t r a i n o n b a t c h ( r e a l , r e a l l a b e l )
69 D. t r a i n o n b a t c h ( fake , f a k e l a b e l )
70
71 D. t r a i n a b l e = F a l s e
72 GAN. t r a i n o n b a t c h ( x b a t c h , [ y b a t c h , r e a l l a b e l ] )
73
74 # t e s t on v a l i d a t i o n s e t
75 gen = G. p r e d i c t o n b a t c h ( x v a l i d )
76 f a k e = np . append ( x v a l i d , gen , a x i s =3)
77 r e a l = np . append ( x v a l i d , y v a l i d , a x i s =3)
78
79 l o s s D r e a l = D. t e s t o n b a t c h ( r e a l , r e a l v l a b e l )
80 l o s s D f a k e = D. t e s t o n b a t c h ( fake , f a k e v l a b e l )
81 er rG = GAN. t e s t o n b a t c h ( x v a l i d , [ y v a l i d , r e a l v l a b e l ] )
82 lossD = ( l o s s D f a k e + l o s s D r e a l ) / 2
83 p r i n t ( ”On v a l i d a t i o n s e t , l o s sD = %f , L1 G = %f , lo s sG = %f ”%(lossD , e r rG [ 0 ] , e r rG [ 1 ] ) )
84 f o r i in range ( 5 ) :
85 # showImage ( d e p r o c e s s ( x v a l i d [ i ] ) , d e p r o c e s s ( y v a l i d [ i ] ) , d e p r o c e s s ( f a k e [ i , : , : , 3 : ] ) , s t r ( epo +1))
86 saveImage ( d e p r o c e s s ( x v a l i d [ i ] ) , d e p r o c e s s ( y v a l i d [ i ] ) , d e p r o c e s s ( f a k e [ i , : , : , 3 : ] ) , s t r ( epo )+ ’ ’+ s t r ( i + 1 ) )
87 # save w e i g h t s f o r e v e r y 10 epoch
88 i f epo % 10 == 0 :
89 G. s a v e w e i g h t s ( ” . . / model / G weight . h5 ” )
90 D. s a v e w e i g h t s ( ” . . / model / D weight . h5 ” )
91
92 G. s a v e w e i g h t s ( ” . . / model / G weight . h5 ” )
93 D. s a v e w e i g h t s ( ” . . / model / D weight . h5 ” )
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